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Recently, we presented an occupied subspace optimization that replaces diagonalization in the
serial gaussian density functional code SEQQUEST and commented on the accuracy of single point
energies given a constraint of localization on the nonorthogonal Wannier-like orbitals that result.
We now investigate the accuracy of calculations that involve relaxing the geometry of a system. The
localization of these orbitals in our Gaussian representation gives asymptotic linear scaling of the
computationally dominant terms.We analyze numerical aspects of the algorithm pertaining to the
localization constraint on the orbitals. We focus on the effect of localization on the accuracy of the
forces, relaxed geometries, relative energies, and formation enthalpies of Y2O3-stabilized ZrO2 for
system sizes up to 375 atoms.

PACS numbers:

I. Introduction

First-principles calculations have certainly impacted
the role of computer simulations in materials science.
Density functional theory (DFT) has proven to be a re-
liable tool for many materials of technological interest.
Until recently, such computationally demanding DFT
calculations were often constrained to very small sys-
tems of 1-10 atoms. Recent advances have made larger
computations, involving ∼100 atoms, possible. For in-
stance, the advent of massively parallel machines and
codes that implement a real space mesh by use of Fourier
transforms or finite-difference[1] coupled with iterative
diagonalization[2] methods have allowed for simulations
of much larger systems. The availability of these ma-
chines is limited, though. One common technique to by-
pass this limitation is the use of an atomic orbital[3],[4]
representation with the benefits of a comparatively small
number of basis functions and resultant sparse matrices.
The drawback of this method is the nonorthogonality of
the basis, which prevents an easy prescription for adding
more basis functions to increase the accuracy.
Another limitation is the O(N3) scaling of diagonal-

ization in obtaining the electronic ground state. Linear
Scaling algorithms[5][6][7][8][9] (for the purpose of this
paper, any method utilizing localized Wannier-like occu-
pied orbitals) have promise to be used as an alternative to
diagonalization in DFT applications.[10][11][12]The ef-
fect of localization, restriction of the occupied orbitals
to have a non-zero contribution from only selected basis
functions (Gaussians in this paper), on scaling with sys-
tem size and on accuracy of total energy has been stud-
ied predominantly with silicon and water clusters. The
accuracy of localization and the corresponding computa-
tional effort for quantitative calculations need addressing

in order to ascertain the usefulness of these algorithms as
well as some familiarity of operational settings. Overall
for linear scaling methods to become an integral part of
the arsenal of the theoretical physicist, one needs to feel
as comfortable with their reliability as exists with plane
waves. This may be a task that may never be achieved,
but for which at least strived. In Ref. [8], we investigated
the effects of localization in determining relative energies
between 3 polymorphs of SiC. In this paper, we now ex-
tend this investigation to the effect of localization on the
accuracy of the forces, relaxed geometries, and forma-
tion enthalpies of YSZ, whose technological importance
will be mentioned later.
For linear scaling techniques that employ an atomic

orbital basis, one needs to establish the accuracy of the
basis set for a particular problem. After this initial step,
the rest of the paper addresses the effects of localiza-
tion. The restriction of localization is an approximation
that one needs to gain experience in using. A difficult
step in using such an algorithm is determining a priori

the required accuracy and the corresponding localization
region for a calculation. One can either test a represen-
tative group of similar systems (ideally of small compu-
tational effort) that will give insight into the localization
regions necessary for a larger calculation, or one can hope
that one is using a large enough localization region. In
this paper, we detail our tests on a representative group.

II. Occupied Subspace Optimization

Only a general overview of the algorithm is given. For
a more detailed discussion the reader is referred to Ref
[8]. For each self-consistent iteration, instead of solving
the generalized eigenvalue equation,

HΨ=SΨE, (1)



2

where Ψ is a M by N matrix of the coefficients of the
M basis functions for the Noccupied eigenfunctions, the
trace of a generalized Rayleigh quotient is minimized

Tr[(Φ†SΦ)−1 Φ†HΦ ]. (2)

The orbital matrix, Φ, is an M by N matrix of the
coefficients for the N localized nonorthogonal occupied
orbitals. We implement a Grassmann conjugate gradient
algorithm[13] to minimize this trace. Typically, we use 15
conjugate gradient steps are per each self-consistent iter-
ation. The algorithm accounts for the nonorthogonality
of the basis and the occupied orbitals, which is necessary
to obtain the gradient. This algorithm has been shown to
approach a theoretical limit of convergence for a silicon
system with no localization.[14]
In order to achieve linear scaling, each localized

nonorthogonal orbital, a column of Φ, is restricted to
have a non-zero contribution from only select basis func-
tions. For this purpose, a localization radius is input for
each shell of basis functions, e.g. the single zeta, double
zeta, and polarization shells (see Ref. 8 for an in-depth
discussion of shells). The accuracy increases as the local-
ization radius increases, and is exact when the localiza-
tion radius is greater than the size of the system. Using
sparse matrix multiplies, the computationally dominant
parts of the algorithm scale as O(N). At a certain system
size (the crossover point), this method is more efficient
than diagonalization.
We now address the sparsity of the other matrices. The

sparsity pattern of the M x N matrices of the type SΦ
is determined in two ways. The first method is by in-
put of a localization radius similarly as for Φ. In the
second method, an element is kept if its value is above
an input threshold value (growth parameter). The ini-
tial SCF cycle used the first method and subsequent cy-
cles used the second method. The initial estimate of Φ
was not sufficient for the second method to be used on
the first SCF cycle. A growth parameter of 5x10−4 was
generally observed to be sufficient for these calculations.
For all results, the sparsity pattern was calculated and
held fixed for each self-consistent field (SCF) cycle. For
system sizes under 1000 atoms, the matrices Φ†HΦ and
Φ†SΦ are not appreciably sparse; therefore, it is more
efficient to use the appropriate dense machine-optimized
routines.

III. Physical System and Basis Set Accuracy

YSZ exhibits high ionic conductivity and has found
widespread use as electrolyte membranes in solid ox-
ide fuel cells, oxygen pumps and separators, and other
electrochemical devices.[15][16][17] Pure zirconia[18],[19]
(ZrO2) exhibits three zero-pressure phases. The mono-
clinic phase is stable up to 1400 K, at which temperature
it transforms into the tetragonal phase. At about 2650
K, this phase converts into the cubic fluorite structure.
Yttria (Y2O3) assumes the bixbyite (a distorted fluorite
lattice) structure.[20] Zirconia is stable in the fluorite

phase at room temperature with approximately a 4-30
% moldoping of yttria. The Oxygen diffusion is at the
highest around 8 % mol[21] of ytrria. We define one de-
fect as 2Zr→ 2Y and an O→ vacancy. Relaxation plays
a major role in the relative energies; therefore, it is a good
system to test the forces, ability to relax a complex sys-
tem, and the relative energies for different localizations.
For a thorough study of YSZ using plane waves see Ref.
[22].

In order to test the accuracy of the basis set, we com-
pare results with SEQQUEST[23] (DZP basis) using di-
agonalization against plane wave results as implemented
in the VASP code[24] within the LDA approximation.
Table I gives the relative energies of different phases of
zirconia and yttria using both codes. For zirconia, we
compare the monoclinic, tetragonal, and fluorite phases
presented in increasing energy. For yttria, we compare
the bixbyite and α-alumina phases. For both codes, we
use k-point meshes of 4x4x4 for all zirconia phases and
the α-alumina phase of yttria and a 2x2x2 for the bixbyite
phase. The semicore p-states were kept in the valence for
all cations. The plane wave results[22] use a 495 eV cut-
off, and the energetics are in agreement with previous
work.[18],[19] The structural properties all lie within 1%
of experiment for zirconia and yttria for both codes. The
biggest discrepancy in the results of SEQQUEST is the
relative energy of the monoclinic phase of zirconia. This
is most likely attributable to the greater difference in
atomic arrangement between the monoclinic and fluorite
phases than between the tetragonal and fluorite phase.
This discrepancy does suggest that comparing structures
of significantly different atomic configurations might be
problematic for LCAO basis sets. In our calculations
with YSZ, we only investigate the cubic phase and have
not encountered discrepancies of this magnitude.

We also compare the energetics of some composite YSZ
structures by calculating the formation enthalpy ∆H, the
(zero-pressure) energy difference between the YSZ com-
pound, E(YSZ), and the composition-weighted average
of its constituent oxides. With x the mole fraction of
Y2O3, EF the energy per ZrO2 in the fluorite structure,
and EBenergy per Y2O3 in the bixbyite structure, the
formula is

∆H = E(YSZ) - [(1-x)(EF ) + x (EB) ]. (3)

In Table I, we show results for a Zr3Y4O12 struc-
ture, the same stoichiometry (but probably not the same
structure due to the positive formation energy) as the
ordered compound[25] for YSZ. We also compare four
Zr2Y2O7 structures (see Ref[22] for specific information
these structures). We chose these structures because they
are small and span a variety of configurations and for-
mation energies. All formation enthalpies are in good
agreement. We did check the comparable accuracy with
and without an Oxygen basis set on the vacancy site (ie.
only the basis functions and not the actual ion). The
difference in formation enthalpy is not significant, but in
order to have uniformity in the functional space we chose
to use the vacancy orbitals.
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IV. Accuracy of Localization

We now investigate the accuracy of different local-
ization regions compared to diagonalization using SE-
QQUEST.

A. Forces

Initially, we concentrate on the accuracy of the forces
for different localization regions compared to diagonaliza-
tion. We use a 24-atom unit cell obtained from doubling
along each lattice vector of the 3 atom primitive cell of
zirconia in the fluorite structure. This cell size is large
enough to see localization effects, but small enough to be
computationally fast. One yttria defect was inserted with
the Y nearest neighbors (n.n.) to the vacancy. Due to
the ionic nature of the compound, we chose to use atom-
centered occupied orbitals as opposed to bond-centered.
We centered four occupied orbitals on Oxygen and three
on the cations. The initial guess for the Oxygen orbitals
was strictly the single zeta s and p basis functions, and
for the cations was the single zeta p.
In fig. 1, we compare the magnitude of the maximum

error in the vector force difference of the forces obtained
from the occupied subspace optimization with the forces
from diagonalization at the initial geometry of the ideal
fluorite crystal. For reference, the magnitude of the max-
imum force with diagonalization is 0.20467 Ry/Bohr at
the ideal fluorite positions.
The horizontal axis is an approximate radius since the

multiple radii for different basis functions prevent a pure
definition of the localization radius. Even though we use
a small k-point sampling, Γ point, for these calculations,
it is acceptable as we are interested only in the compar-
ison with diagonalization, which we also use only the Γ
point. More k-points would give a more accurate charge
density, but the differences in the self-consistent charge
densities with different k-point meshes shouldn’t change
the localization properties. No significant difference in lo-
calization between a 24 and a 81 atom unit cell provides
evidence for this statement.
From these results, we quickly obtain insight for ac-

ceptable settings of the localization radius. The localiza-
tion region of the orbitals on the cations can be smaller as
these are semi-core states. For the orbitals on the Oxygen
atom, the inclusion of the polarization basis functions of
the first nearest neighbor (n.n.) of Oxygen is crucial. The
orbitals on the cations require either the single or double
zeta of the first n.n. basis functions. One does not gain
much in accuracy by increasing the orbitals on Oxygen
if the orbitals on the cations have a small localization
region, and vice versa.

B. Relaxation

Using the better localization settings obtained from
the last section, we next check the accuracy of a geom-
etry relaxation. We use an 81-atom with the configura-
tion, labeled 1-A, of a single defect with both Y n.n. to

the vacancy. The initial geometry is the ideal fluorite
positions. The starting bond length was 4.15 Bohr. Fig
2 plots the magnitude of the maximum and rms of the
vector difference of the final atomic positions vs. the ap-
proximate localization radius. Fig. 3 plots the same data
for an 81-atom system with two Y2O3 defects. This con-
figuration, labeled 2-A, has two vacancies separated by a
Zr in the (111) direction (a distance denoted by (2;2;2))
and all Y n.n. to vacancies. A configuration is considered
relaxed if the magnitude of the largest force on any atom
is below 2x10−3 Ry/Bohr.
For the 2-A configuration, we encountered some prob-

lems relaxing if the vacancy orbitals are allowed to move.
The vacancy orbitals started to move appreciably just
before the relaxed geometry was achieved and the forces
never reached convergence. If the vacancy orbitals are
not allowed to move, a relaxed geometry is achieved. A
localization region incorporating all Gaussian basis func-
tions up the second n.n. for the Oxygen occupied orbitals
and the first n.n. for the cations (radius of 5 Bohr for all
orbitals) was necessary in order to relax this configura-
tion.

C. Relative Energies and Formation Enthalpies

Finally, we compare the formation enthalpies of some
81-atom YSZ structures. For each system and defect
configuration, we start from the ideal lattice, relax the
atomic positions, and use the total energy at the final
positions. In order for Eq. 3 to be consistent with the
localization constraint, each of the energies in the equa-
tion must be calculated with the same localization region.
From k-point calculations of the primitive unit cells, the
Γ point is sufficiently converged for 192 (fluorite- ZrO2)
and 320 (bixbyite-Y2O3) atoms respectively and thus
these systems were used to calculate EF and EB . Ta-
ble II gives the formation enthalpy for diagonalization
and for several localizations, given by approximate ra-
dius, for the 1-A configuration. The enthalpies do not
approach the diagonalization value monotonically. This
is not a breakdown of the variational principle, but a con-
sequence of each of the energies in Eq. 3 monotonically
decreasing at different rates.
In Table III, we give the formation enthalpies for sev-

eral configurations with the localization radius of 5 Bohr
for all orbitals. The new configurations are (1-B) – one
defect with one Y n.n. to the vacancy; (2-B) – two va-
cancies as in 2-A and no Y n.n. to a vacancy; and (3)
2-C – two vacancies with more separation between them
and no Y n.n. to a vacancy. The two vacancies in 2-C are
still separated along the (111) direction, but now have 3
occupied FCC lattice between them, a distance of (4;4;4).
For each configuration, we give the number of Y n.n. to
a vacancy and the distance between the vacancies where
applicable. The final row gives the formation enthalpies
for the same configurations using diagonalization. The
error from diagonalization is approximately the same for
each configuration. This consistency is a reflection that
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the relative energetics are correct. We get similar consis-
tency for other localization regions also.
We chose these configurations in order to isolate a few

interactions and find preferable positions between the
constituents with only a few configurations. Most impor-
tantly, we wanted to test the accuracy for the localization
for a few varied environments. The results have an over-
all consistency with previous plane wave calculations. We
find the Y prefer not to be n.n. to the vacancy as do Ref
[18, 22]. The preferred separation for the vacancies is
not inconsistent with Ref[22], which found (2;2;2) to be
optimal, as larger separation distances than (2;2;2) were
not done. Recent diffuse scattering experiments[21] do
suggest that the vacancies prefer to sit at the (2;2;2) dis-
tance but this is for higher defect concentrations where
the larger separations may not be possible.

D. Computational Effort

With a localization radius of 5 Bohr for all orbitals
(minimum necessary for relaxing all systems studied to
the accuracy of 2x10−3 Ry/Bohr), the subspace opti-
mization uses an approximately an equal amount (1Gb)
of RAM memory as diagonalization for a system of
192 atoms. Using 15 conjugate gradient steps for 375
atoms, the occupied subspace optimization and diago-
nalization take approximately an equal amount of time
(the crossover point) of 5,000 seconds. Similar number of
self-consistent and relaxation steps were present for both
diagonalization and the subspace optimization with this
localization.

V. Summary

We have presented an investigation of the implemen-
tation of localization within an occupied subspace opti-

mization for the quantitative analysis of a technologically
important material, YSZ. We have established the accu-
racy of the Gaussian basis set. We utilized localization to
produce linear scaling in the computationally dominant
steps of the algorithm. The prominent results are the sys-
tematic study of the localization constraint (restriction
of the occupied orbitals to have a non-zero contribution
from only selected basis functions) on the nonorthogo-
nal Wannier-like occupied orbitals. We concentrated on
the effect on the accuracy of the forces, relaxed geome-
tries, relative energies, and formation enthalpies of pure
Zirconia and yttria, and the mixed compound of yttria-
stabilized Zirconia (YSZ). The code has produced results
comparable to plane wave results and capable of relax-
ation calculations of up to 375 atoms in 162 hours on a
single DEC alpha 440 Mhz workstation.
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FIG. 1: Figure 1 For 24 atom zirconia unit cell with one de-
fect, the maximum error in force vs. approximate localization
radius.

@BA @C@
@BA @CD
@BA @CE
@BA @CF
@BA @CG
@BAIHJ@

DBA K LMA K EMA K KBA K FMA K
NPOCQSRITSUWVYX[ZS\SNP]

^ __`
_ab
`
c _d egfhi ekj

FIG. 2: Magnitude of the maximum and rms errors in final
relaxed positions vs. approximate localization radius for con-
figuration 1-A.

[24] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993);
49, 14 251 (1994).

[25] H.G. Scott, Acta Cryst. B33, 281 (1977)

lMm lCl

lMm lMn

lMm lCo

lMm lCp

lMm lCq

qMm r r rMm r s sMm r
tPuCvxwIyxz|{Y}[~x�StP�

� ���
���
�
� ��

�k��
���k�

FIG. 3: Magnitude of the maximum and rms errors in final
relaxed positions vs. approximate localization radius for con-
figuration 2-A.
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VASP- Ref. 22 SEQQUEST- present

ZrO2(T) – ZrO2(F) -36 -27

ZrO2(M) – ZrO2(F) -81 -6

Y2O3(α) - Y2O3(B) 119 137

∆H(Zr3Y4O12) 108 101

∆H (Zr2Y2O7–V2.a) 471 491

∆H (Zr2Y2O7–W2.a) 51 50

∆H (Zr2Y2O7–Y2.a) 121 114

∆H (Zr2Y2O7–Z2.a) 600 605

TABLE I: Table I. Relative energy differences between the
monoclinic, tetragonal, and fluorite phases of ZrO2, relative
energy difference between the α-alumina and bixbyite phases
of Y2O3, and formation enthalpy of YSZ structures in units
of meV/cation.

Diag 2.95 5 5.73 6.32 9

∆H Zr25Y2O53(1-A) 31.6 5.6 17.7 16.6 10.0 22.9

TABLE II: Table II. Formation enthalpy (meV/cation) for
configuration 1-A for diagonalization and for several approx-
imate localization radii.

1-A 1-B 2-A 2-B 2-C

# Y-Vac NN pairs 2 1 ALL NONE NONE

Vac-Vac distance —– —– 2;2;2 2;2;2 4;4;4

5 radius 17.7 9.7 78.5 43.5 -13.9

diagonalization 31.6 24.2 95.2 58.6 -0.9

TABLE III: Table III. Comparison of formation enthalpy
(meV/cation) for several configurations between diagonaliza-
tion and a localization radius of exactly 5. Note, the distance
given for 2-C is for the two vacancies in the same unit cell -
the actual closest distance to any image is (4;2;2).


